Analyse verschiedener Metriken zur System-Identifikation

Klaus Zauner

September 24, 2019

<ロト < 部 > < 言 > く言 > 言 の Q (~ 1/19

- \checkmark Datenbasierte Modellbildung
- \checkmark LS-Schätzer, BLUE-Bedingungen
- \checkmark L₁- und L_{∞}-Schätzer
- \checkmark Analyse der alternativen Schätzer auf Basis von Simulationsstudien

Kapitel

- \checkmark Theorie
- \checkmark Simulations studien: Parametrische Modelle
- ✓ Simulationsstudie: Tankmodell
- \checkmark Zusammenfassung

LS-Schätzer, BLUE-Bedingungen

Mit Eingangsdaten $\mathbf{U} = [u_1, u_2, \dots, u_k, \dots, u_N] \in \mathbb{R}^N$ und Ausgangsdaten $\mathbf{Y} = [y_1, y_2, \dots, y_k, \dots, y_N] \in \mathbb{R}^N$ eines zu identifizierenden Systems, sowie einer gewählten Modellstruktur

$$\hat{\mathbf{Y}} = \mathbf{\Phi}\hat{\mathbf{\Theta}} + \mathbf{e},$$
 (1)

mit der Störung $\mathbf{e} = [e_1, e_2, \dots, e_k, \dots, e_N] \in \mathbb{R}^N$, ergeben sich deren unbekannte Parameter $\hat{\mathbf{\Theta}}$ unter Verwendung des LS-Schätzers zu

$$\hat{\boldsymbol{\Theta}} = (\boldsymbol{\Phi}^{T} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{T} \mathbf{Y}.$$
(2)

LS-Schätzer, BLUE-Bedingungen

- ✓ BLUE best linear unbiased estimator
- \checkmark best geringste Varianz der Parameterschätzung
- \checkmark unbiased Erwartungstreue, d.h. $E\{\hat{\mathbf{\Theta}}\} = \mathbf{\Theta}$

Die BLUE-Bedingungen sind:

) System- und Modellstruktur stimmen überein

$$\fbox{2}$$
 Anzahl der Daten $N o \infty$

3)
$$E\{(\varphi_i \varphi_i^T)^{-1}\} \neq 0$$
 – die Hessematrix ist Invertierbar

4
$$E{\mathbf{e}} = 0$$
 – mittelwertfreie Störung

5 $E{\varphi_i e_i} = 0$ – Regressor und Störung sind unkorreliert

alternative Schätzer

LS-Schätzer:

$$\hat{\boldsymbol{\Theta}} = \arg\min_{\boldsymbol{\Theta}} V_2(\boldsymbol{\Theta}) = \arg\min_{\boldsymbol{\Theta}} \frac{1}{2} (\mathbf{y} - \boldsymbol{\Phi} \boldsymbol{\Theta})^T (\mathbf{y} - \boldsymbol{\Phi} \boldsymbol{\Theta})$$
(3)

 \checkmark L₁-Schätzer

$$\hat{\boldsymbol{\Theta}} = rg\min_{\boldsymbol{\Theta}} V_1(\boldsymbol{\Theta}) = rg\min_{\boldsymbol{\Theta}} \sum_{i=1}^N |r_i(\boldsymbol{\Theta})|$$
 (4)

 \checkmark L_{∞} -Schätzer

$$\hat{\boldsymbol{\Theta}} = \arg\min_{\boldsymbol{\Theta}} V_{\infty}(\boldsymbol{\Theta}) = \arg\min_{\boldsymbol{\Theta}} \max|r_i(\boldsymbol{\Theta})| \tag{5}$$

<□><□><□><□><□><□><□><□><□><□><□><0< 6/19 Die Optimierungsprobleme zu L_1 - und L_∞ -Schätzer können als lineare Programme der Form

$$\min_{\mathbf{x}} \mathbf{f}^{\mathsf{T}} \mathbf{x}, \text{ mit Nebenbedingungen } \begin{cases} \mathbf{A} \mathbf{x} \leq \mathbf{b} \\ \mathbf{A}_{eq} \mathbf{x} = \mathbf{b}_{eq} \\ \mathbf{x}_{min} \leq \mathbf{x} \leq \mathbf{x}_{max} \end{cases}$$
(6)

fomuliert und mit MatLab linprog gelöst werden.

Studien an parametrischen Modellen

✓ PNFIR:

$$y_{k} = 0, 1 + 0, 1u_{k} + 0, 1u_{k-1} - 0, 5u_{k}^{2} - 0, 2u_{k}u_{k-1} + 0, 1u_{k-1}^{2} + 0, 4u_{k}^{3} + 0, 5u_{k}^{2}u_{k-1} - 0, 2u_{k}u_{k-1}^{2} + 0, 2u_{k-1}^{3} + e_{k}$$
(7)

✓ PNARX:

$$y_{k} = 0, 5y_{k-1} + 0, 3u_{k-2} + 0, 3u_{k-1}y_{k-1} + 0, 5u_{k-1}^{3} + e_{k}$$
(8)

✓ OE:

$$y_k = u_{k-1} - 0,25y_{k-1} + e_k + 0,25e_{k-1}$$
(9)

Studien an parametrischen Modellen: Störungen

- ✓ MWN mittelwertfreies, weißes Rauschen, keine Verletzung
- ✓ WN weißes Rauschen mit Mittelwert, Verletzung: 4
- \checkmark CN farbiges Rauschen, Verletzung: 5
- ✓ MWN + Peak mittelwertfreies, weißes Rauschen + Störspitzen, Verletzung: 4

Studien an parametrischen Modellen: Ablauf

Figure: Ablaufdiagramm: Studien an parametrischen Modellen

Studien an parametrischen Modellen: PNFIR

Figure: grafische Gegenüberstellung: über n = 100 Validationen gemittelte FIT-Werte

Studien an parametrischen Modellen: PNARX

Figure: grafische Gegenüberstellung: über n = 100 Validationen gemittelte FIT-Werte

Studien an parametrischen Modellen: OE

Figure: grafische Gegenüberstellung: über n = 100 Validationen gemittelte FIT-Werte

э

Studie an einem realistischen System-/Simulationsmodell: Tankmodell

zeitdiskrete Approximation:

$$\begin{aligned} x_1(k+1) &= x_1(k) - k_1 \sqrt{x_1(k)} \\ &+ k_2(u(k) + w(k)) & (10) \\ x_2(k+1) &= x_2(k) + k_3 \sqrt{x_1(k)} \\ &- k_4 \sqrt{x_2(k)} & (11) \\ y(k) &= x_2(k) + v(k) & (12) \end{aligned}$$

Figure: Tankmodell: schematische Darstellung

Studie am Tankmodell: Störungen

- ✓ MWN mittelwertfreies, weißes Rauschen, keine Verletzung
- \checkmark MPM model-plant mismatch, Verletzung: 1

Studie am Tankmodell: iterative Modellstrukturauswahl

Figure: Ablaufdiagramm: iterative Modellstrukturauswahl

Studie am Tankmodell: Modellstruktur

Table: Modellstruktur des Tankmodells

Größe	Wert
Verzögerung Eingang: n _{k, u}	1
Verzögerung Ausgang: n _{k, y}	1
Modellordnung bez. Eingang: <i>n_b</i>	1
Modellordnung bez. Ausgang: <i>n_a</i>	1
Polynomgrad: <i>p</i>	3

Studie am Tankmodell: Ergebnis, Störung: MWN

Figure: grafische Gegenüberstellung: über n = 20 Validationen gemittelte FIT- Werte

Zusammenfassung

Table: Zusammenfassung der Simulationsergebnisse

	MWN FIR / AR	WN FIR / AR	CN FIR / AR	 	Strukturabw.
L_1	✓	×</td <td><!-- ×</td--><td>\checkmark</td><td>×</td></td>	×</td <td>\checkmark</td> <td>×</td>	\checkmark	×
L_2	\checkmark	√/~	√/~	\checkmark	\sim
L_∞	\times/\sim	\sim/\checkmark	\checkmark	×	×

Danke für Ihre Aufmerksamkeit!