

Maneuver Identification in Highway Traffic Using Elastic Template Matching

Bachelor Thesis Christina Schmid

Final Presentation - 24. 10. 2018

Supervision by Dr. Pavlo Tkachenko

Institute for Design and Control of Mechatronical Systems

Topic Overview - Goal

Development of a method for a **robust identification** of different maneuvers in highway traffic

Based on a special elastic template matching algorithm

> Dynamic time warping (DTW) method for an optimal non-linear alignment.

➤Enables a correct assignment of the same maneuver although :

- different dynamics (speed, aggressiveness, etc.)
- data with missing values.
- Focus only on the most important and basic ones:
 - cut-in maneuver
 - **pull-out** maneuver
 - following case

5

time in s

9

10

11

2

Maneuvers

Ego car

Vehicle

Vehicle which executes maneuver

Other traffic participant

Following

Template Matching Algorithm

1. Off-line initialization

Select maneuver **template** dX_T

2. On-line data

Collect lateral displacement dX_i (i = 1, ..., N) between ego vehicle and all N surrounding vehicles.

3. DTW alignment

Use DTW method to align dX_T and dX_i

4. Maneuver recognition

Calculate normalized Euclidian distance $D(dX_i^a, dX_T^a) / |dX_i^a|$

If there exist $i = i_*$ such that this value satisfys certain conditions related to certain **constant treshold value** (d_1) go to step 5.

5. Identification related to ego vehicle

If the vehicle with index i_{*} has a **predefined position** around the ego car the maneuver is identified.

Sliding window strategy for extracting dX sequences in the on-line mode

Comparison of decision tree and elastic template matching algorithms with ground truth - Example Cut-In

DTW Barycenter Averaging (DBA) & Adaptive Scaling (AS)

Pattern = Average of the corresponding training set

> NLAAF average can grow very long (N*T)

- N (number of sequences), T (length of sequences)
- DTW complexity increases enormously
- PSA tries to improve NLAAF
 - Possibly information gets lost due to short average

Both are sensitive to the order in which elements are processed

DBA avoids using iterative pairwise averaging

- Sets a random element of the training set as initial average and gradually refines it
- Balance : Information/DTW comlexity

Assumption: Window size = length pattern

- AS : most accurate method to shorten DBA results
 - Iterativly combining the two closest elements
 - Again Balance : Information/DTW comlexity

DBA: refining the average of two sequences

Cut In – Training Set, Template, Treshold

Collect a training set from the historical data
 Get a *template dX_T* using DTW averaging
 (DBA) & AS (12 samples)

- Same training set as for the template
- Estimation of treshold *d* by calculating normalized DTW distances

Cut In – Results

- **1. Off-line initialization**
- \succ template dX_T
- 2. On-line data

3. DTW alignment

- 4. Maneuver recognition
- \succ constant treshold value (d_1)
- 5. Identification related to ego vehicle
- > predefined position
 - check if 2 cut-ins within short time

Identification method	TP	FP	FN	F_1 -score
DT	12	6	6	$0,\!67$
TMA	18	0	1	0,97

Parameter	w_s	block	threshold	TP	FP	FN	F_1 -score
set							
b 1	12	3	0,6	15	1	4	0,857
b_2	12	2	0,6	15	1	4	0,857
b_3	14	2	0,6	18	3	1	0,9
b_4	14	2	0,63	18	3	1	0,9
b_5	10	2	0,63	17	1	2	0,918
b_6	10	2	0,62	17	0	2	0,944
b 7	10	1	0,62	18	0	1	0,972

Pull Out – Training Set, Template, Treshold

Training set (blue) and template using DBA (red), DBA + AS (yellow)

- $\frac{1}{2} \int_{0}^{0} \int_{0}^$
- Collect a training set from the historical data
 Get a *template dX_T* using DTW averaging
 (DBA) & AS (12 samples)

> Same training set as for the template

 $\rightarrow d = 0.6$

Estimation of treshold *d* by calculating normalized DTW distances

Pull Out – Results

- **1. Off-line initialization**
- \succ template dX_T
- 2. On-line data

3. DTW alignment

- 4. Maneuver recognition
- \succ constant treshold value (d_1)
- 5. Identification related to ego vehicle
- > predefined position
 - check if 2 pull-outs within short time

Identification method	TP	FP	FN	F_1 -score
DT	12	6	6	0,6
TMA	18	0	1	0,94

Parameter	w_s	block	threshold	TP	FP	FN	F_1 -score
\mathbf{set}							
c_1	12	3	0,6	12	0	6	0,8
c_2	12	3	$0,\!65$	13	0	5	$0,\!827$
c_3	12	2	$0,\!65$	14	0	4	$0,\!875$
c_4	14	2	$0,\!65$	14	0	4	$0,\!875$
c_5	14	2	0,75	15	0	3	0,909
c_6	14	2	1	16	1	2	0,914
c_7	14	2	0,95	16	0	2	0,941

Following – Training Set, Template, Treshold

Training set (blue) and template using DBA (red), DBA + cut (yellow)

Normalized DTW distance between template and training set $\rightarrow d = 1.3$

Collect a training set from the historical data
 Get a *template dX_T* using DTW averaging
 (DBA) & cut to size 12 (samples)

Same training set as for the template

Estimation of treshold *d* by calculating normalized DTW distances

Following – Results

- **1. Off-line initialization**
- \succ template dX_T
- 2. On-line data

3. DTW alignment

- 4. Maneuver recognition
- \succ constant treshold value (d_1)
- 5. Identification related to ego vehicle
- predefined position
 - Hold following state

Identification method	TP	FP	FN	$F_1 - Score$
DT	8	5	20	0,39
TMA	13	3	4	0,79

Parameter	w_s	block	threshold	TP	\mathbf{FP}	\mathbf{FN}	$F_1 - Score$
\mathbf{set}							
d_1	12	5	1,3	12	3	5	0,75
d_2	12	5	1,7	13	3	4	0,787
d_3	14	5	1,7	12	3	5	0,75
d_4	14	4	1,7	12	4	5	0,727
d_5	14	3	1,7	13	5	4	0,742
d_6	16	3	1,7	10	6	7	0,606
d_7	18	3	1,7	10	6	7	0,606

Simulink Implementation

Continuous Regognition - Method

≻1-NN Algorithm

- Compute distances to training set members
- > Assign sequence to class of nearest element
- Requires a lot of data -> computationally expensive

Nearest Centroid Classification

- Represent training set through centroid
- Compute distances to centroids
- > Assign sequence to nearest centroid
- Distance measure: DTW

3-NN and 1-NN classification

Nearest Neighbors algorithm – Settings, New Maneuver

Principle

- Continuous detection
- Calculate DTW distances between patterns and test sequence
- Select maneuver with minimal distance
- ➢ No thresholds
- Synthetic patterns
- ➢ New Maneuver: Parallel

Nearest neighbors algorithm - Result example vehicle

Conclusion

- Achieved the goal to show that modified TMA is powerful identification method
- DBA & AS are advantegous regarding the pattern extraction
- Centroid classifier enables continous identification
- Promising Approach: SPRING
 - Superfast subsequence search using DTW
 - Increase accuracy and speed