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Abstract
Using optimization for solving control problems has become much more accessible due to
computational advancements in recent years. With the introduction of MPC in the petro-
chemical industry for linear plant models, nonlinear applications followed and enabled finding
optimal control solutions for complex tasks. These tasks often require the abidance by certain
limitations, which are referred to as constraints in an NMPC environment.
This development entailed two major hurdles to be negotiated. The first one is finding efficient
algorithms for problems such as NMPC optimizations, where Ohtsuka’s C/GMRES provides
a remedy and is heavily used in this work. Second, improving model accuracy is an ongoing
topic, which tries to eliminate model-plant mismatches, but usually fails to do so, because
models solely approximate real plants. Hence, robust control approaches were introduced in
order to deal with disturbances and inaccuracies.
In this work, ideas from robust control are used and developed in order to deal with the problem
of robustly satisfying inequality constraints on models with parameter uncertainties. Three
approaches are presented, where the main goal is to find a worst case from a given parameter
set. One method makes use of the fact that quasi-convex functions find their maximum at
an extreme point of the function’s argument and therefore enables finding the worst case via
extreme point scenarios. Next, a method to find the worst case directly from the continuous
parameter set is discussed, which is treated as a separate maximization problem, resulting in
a bilevel optimization problem. A way of transforming such problems into singlelevel tasks via
KKT conditions is presented, requiring the constraint function to be pseudo-concave. At last,
sensitivity is discussed and used as a separate tool and to facilitate previous approaches.

Introduction
Originally a ’robust control system’ was understood to be maintaining stability and perfor-
mance specifications for a certain range of model variations and noise signals. Ever since
MPC was introduced, constraints attracted attention and inevitably the term robustness was
widened to incorporate robust constraint fulfilment. Robust constraint fulfilment in general
means satisfying constraints while model plant mismatches or other disturbances are present.
Neglecting signal noise, the problem being tackled deals with model uncertainties — parameter
uncertainties to be precise. This means that the plant model is known, bar some parameters
which are only guaranteed to lie within a certain range.

Problem Formulation
By dividing the classical NMPC problem into two parts, where one keeps track of a trajectory
based on nominal parameters ~p, while the other enables calculating with an arbitrary p, the
continuous problem formulation can be deduced:

min
u

J(~x;u) = '(~xN) +
∑N�1

i=0 L(~xi ;ui)

s.t. xi+1 = xi + f(xi ;ui ;p) 8 i 2 I = f0; 1; :::; N � 1g

~xi+1 = ~xi + f(~xi ;ui ; ~p) 8 i 2 ~I = f0; 1; :::; N � 1g
g(xi ;ui ;p) � 0 8 i 2 I+1 = f1; 2; :::; Ng 8p 2 P1;

Here, p is chosen to be confined by p 2 P1, where P1 := fp : pmin � p � pmaxg. However
in some cases, P1 might be discrete. This can be the case, when there is a known number
of devices to be controlled with parameters that were measured beforehand. Therefore, we
introduce a set P := fp1;p2; :::;pvg = P that contains every parameter vector pk obtained.

min
u

J(~x;u)

s.t. Xi+1 = Xi + F(Xi ;ui ;P) 8 i 2 I = f0; 1; :::; N � 1g

~xi+1 = ~xi + f(~xi ;ui ; ~p) 8 i 2 ~I = f0; 1; :::; N � 1g
G(Xi ;ui ;P) � 0 8 i 2 I+1 = f1; 2; :::; Ng:

Since the plant is only affected by the optimization’s first entry u0, the problem can be relaxed
by choosing I := f0g.

Scenario Based Approach
The goal is to find the discrete worst case parameter accord-
ing to the following definition:

Definition 1. The parameter (vector) p?
v is called the

discrete worst case parameter (vector) of a constraint
function gv(xi ;ui ;p) iff

p?
v := argmax

p

gv(xi ;ui ;p)

s.t.p 2 P

Irrespective of any previous knowledge, if P1 := fp :
pmin � p � pmaxg holds, it seems reasonable to set
P := fpmin; :::;pmaxg, i.e. containing the extreme points:

Theorem 1. Let f be a quasi-convex function defined
on the bounded, closed convex set 
. If f has a maxi-
mum over 
 it is achieved at an extreme point of 
.

and therefore

Theorem 2. If gv(x0;ui ;p) � 0 are quasi-convex in-
equality constraint functions in p 2 P1 8 x0 2 X ? �
X ;ui 2 U? � U , where P1 is a bounded, closed
convex set, the worst case, which is the maximum of
gv(x0;ui ;p), can be established by only considering the
extreme points of P1.

Min-Max Based Approach
The goal is to find the continuous worst case parameter
according to the following definition:

Definition 2. The parameter (vector) p?
v is called the

continuous worst case parameter (vector) of a con-
straint function gv(xi ;ui ;p) iff

p?
v := argmax

p

gv(xi ;ui ;p)

s.t.p 2 P1

First, the NMPC problem is altered in order to incorporate
the definition of the continuous worst case:

min
u

J(~x;u)

s.t. ~xi+1 = ~xi + f(xi ;ui ; ~p) 8i 2 ~I
δ? � 0

(p?; �?v) := argmax
p;�v

�v 8v 2 f1; :::; rg

s.t. xi+1 = xi + f(xi ;ui ;p) 8i 2 ~I
g(xi ;ui ;p) = δ
p 2 P1;

which can be turned into a single-level problem by utiliz-
ing KKT conditions, requiring the constraint function to be
pseudo-concave for a global maximum.

Sensitivity Based Approach
The goal of the sensitivity based approach is to minimize
the parameter uncertainties’ impact, which however does
not guarantee robust constraint satisfaction, but might still
be a sufficient approach for some applications. Therefore,
we introduce the term constraint sensitivity derived from
performance related ideas:

SC =
dg

dp
=

@g

@p
+

@g

@xi

@xi

@p

In order to minimize SC, a new performance index is defined:

�L = L+ LS;

with

LS = wS
TSC

TSCwS:

By introducing sensitivity states, one can define new state
vectors to calculate SC:

�xi =

[
xTi ;

(
@xi

@p

)T
]T

�f(xi ;ui ;p) =

[
f(xi ;ui ;p)

T ;

(
d

dt

(
@xi

@p

))T
]T

Summary
The first method, called Scenario Based Approach, analysed how a worst case parameter can be extracted from or included in a discretized parameter set. A guideline on how to choose a parameter
set for robustly satisfying constraints was given and the necessary requirements were analysed. It was shown that the developed method culminates in requiring checking the parameter’s extreme
points, which guarantees robust results as long as a quasi-convex constraint function is present.
The second method, named minmax, utilizes the same concept of trying to find a worst case parameter, but uses a nested optimization over a continuous parameter set instead of discretizing the
set in the first place. An algorithm, which uses KKT conditions to solve the inner program, was developed. The choice of utilizing KKT conditions enforces a pseudo-concave property on the
constraint functions to guarantee global maxima, setting the minmax approach apart from the scenario method.
The third method, labelled sensitivity approach, was introduced with the idea of minimizing the parameter uncertainties’ impact on the constraint functions. The preliminary method is simple and
solely requires altering the cost function to incorporate the sensitivity with a weighting factor.


