
Nonlinear Identification: 
Extended State-Affine Systems

Development of Regularization Methods and Investigation on different Examples

Abstract

The aim of this thesis is to investigate the nonlinear identification using Extended State Affine Systems
(ESA systems). In the first part of this thesis, the basics of the ESA systems are described. Furthermore, it 
is shown how data equations can be obtained for different approximation approaches. The author focuses 
the exact identification and its approximations. Also, the notation of the system class is described.
Another part is the development of regularization methods. To solve the identification problem it is 
necessary to solve an inverse problem. In the case of ESA, it the problem is usually ill posed. Using the 
different regularization methods the solution of the inverse problem can be found in a numerically more 
stable way. Three different groups of regularization methods are developed. First, the Tikhonov 
regularization methods; second, the truncation regularization methods and finally the iterative methods. 
For each group, different possibilities for parameter choice rules are described. At the end of this part, the 
presented methods are compared and evaluated. Hereby, the relevance of the Kernel method is 
investigated.
The last part of the thesis deals with the comparison of the ESA identification with other identification 
methods. Therefore, two other methods are used: the ARMAX identification and the Neural Networks. 
Under these conditions, different examples will be investigated. Several validation values are introduced 
and defined to compare the various methods on the examples. The extrapolation behaviour of the different 
methods is important. Furthermore, the examples are chosen in a way using a linear, a weak nonlinear 
and a nonlinear example. Also, the nonlinear example is compared to results in the literature.
Finally, advantages and disadvantages of the ESA identification are stated.

Introduction: Nonlinear ESA Identification
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System description:

Advantages:

• good approximation capabilities
(based on fading memory assumption)

• state-space model

• includes several other model classes
(bilinear systems, Hammerstein systems, ...)

Estimating ΘX:
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Starting from the Data Equation:

Solving the following Least Squares Problem:

X XXΓ ≈ Θ Φ

From the measurement data:

Using the SVD:
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Estimating X:

Estimating System Matrices:
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Solving the following Least Squares Problems:

Regularization Methods
and Kernel Method 

Comparison of 
Regularization Methods

Comparison with other 
Methods

Conclusions and 
Outlook

Y = ΘΦ+Ξ

Following equation has to be solved to obtain Θ Regularization Methods
•Tikhonov Regularization
•Tikhonov Regularization with Total Least Squares
•Truncated SVD
•Truncated TLS
•Iterative Regularization 

Appearing Problems
•ill-conditioned problems:

–exploding dimension with increasing block size
–inadequate persistent excitation

•under-determined problems:
–not enough measurement data for larger block sizes 

Solution Approaches
•Regularization Methods

–to find better solutions for ill-conditioned problems
•Kernel Methods

–to enable dealing with under-determined systems

Tikhonov-Regularization
finding a better conditioned solution near the ill-conditioned solution
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Tikhonov Regularization:
Parameter Choice Rules

•Discrepancy Principal
•L-Curve Criterion
•Generalized Cross Validation (GCV)
•Quasi-Optimal Criteria
•Zero-Crossing Method 10
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L-curve: Example

to enable dealing with under-determined systems
TΘ = ΨΦ

from this follows
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GCV function: Example

Parameters for Comparison

•VAF-value of the output

•distance between the real and the determined eigenvalues
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Results: Eigenvalues + Kernel

Regularization + Kernel: State Affine Example
with SNR = 5dB, k = 4

Results: Eigenvalues

Triangular ESA Example: SNR = 10dB Continuous Extended State Affine System: 
SNR 15dB

Conclusions
•use Kernel only in 
under-determined case

•regularization improves results
•best results with:

– Tikhonov Regularization 
+ L-Curve

– Truncated Total Least Square
+ L-Curve

•Other Methods:
– ARMAX identification
– Neural Networks

•Used Examples
– Linear: RotoFlex
– Weak Nonlinear: Test Bench Shaft
– Nonlinear: SilverBox

Test Bench Shaft: ESA + NN + ARMAX
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ARMAX Solution: Arrow Validation ω
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ARMAX Solution: Arrow Validation T
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SilverBox: ESA + NN + ARMAX
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Tikhonov Regularisation Solution with Optimization: Arrow Validation SilverBox
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Tikhonov Regularisation Solution with Optimization: Arrow Validation SilverBox
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NN and ARMAX Solution: Arrow Validation SilverBox
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NN and ARMAX Solution: Arrow Validation SilverBox
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SilverBox: Input signal

SilverBox: Input

Conclusions

• regularization improves the result compared to the 
least squares solution

• ESA-identification shows good extrapolation behaviors

• usage of constant term g(u) = 1  is useful

• lower computation effort for ESA than NN

• advantage of ESA for MIMO systems

• ESA uses no error model problems with high noise 
levels

• important that f(u,y) is chosen practical

• limitation of the matrix size (particular SVD)

– limitation of system order

– limitation of useable data points

• TTLS is not so sensible then TR

•other mathematical solution than SVD

•error model

•maybe regularization ins general form

•further investigation on physical systems

•controller design for ESA systems

Outlook

Diploma Thesis:


