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This thesis is to be concerned with the identification of linear, parameter-varying (LPV) systems. 

In the first part of the thesis, the basics of LPV models are described in a short introduction.  Then, an identification
procedure developed by Fabio Previdi and Marco Lovera is investigated. They deal with SISO LPV systems with a 
scheduling variable which is identified and does not have to be measured. This variable is the ouput of a feed
forward neural network, whos parameters are optimized in the algorithm. The optimization is done by minimizing a 
prediction error criterion with a separable least squares algorithm.

In the second part, a new identification algorithm is presented, which considers MISO LPV systems, where the
scheduling variable is the ouput of a NARX model. This method consists of two steps:
First, a pure NARX model with polynomial nonlinearities formed of the input and output signals is identified. This
problem can be solved using a standard linear least squares method. In order to keep the complexity of the model
in a reasonable range, only relevant nonliearities, according to a simulation error criterion, are considered. 
In a second step, the relevant nonlinearities from the first step are used to form a scheduling variable. This NARX 
model with polynomial nonlinearities is combined with a linear model in order to get a LPV system. Since all 
parameters, both of the NARX and the linear model, have to be estimated at once, a nonlinear optimization
algorithm has to be used. Here, a thrust region method from the matlab® optimization toolbox is used. 

Finally, this new algorithm is tested on several simulation and application examples like the airpath, the exhaust 
gas return system, and the variable geometry turbine system of a diesel engine. For comparison, the mentioned 
systems were also investigated with other identification algorithms, especially the one from Previdi and Lovera. 

State space description:

• system matrices depend on parameter-vector

• most identification algorithms assume that is measured online

• restrictions of absolute value and rate of change of parameter-vector
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Input - output description:

With the chosen parameter dependency on the scheduling variable z:
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scheduling variable is the output of a multilayer feed forward
neural network:
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Parameter estimation:
Parameters of the linear system and parameters of the nonlinear part have to be estimated.

This results in a nonlinear optimization problem with the loss function:
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Optimization with separable least squares (SLS) algorithm:

• find initial value for

• find an estimation of    with the linear least squares solution

• new loss function

• find an estimation
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Pros and cons:

• dimension of the nonlinear optimization problem is reduced from dim(  ) + dim(   ) to dim(   )

• it is critical to find a good initial guess for
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First step: identification of a polynomial NARX model
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Flow diagramm: NARX identification

All regressors are rated with the simulation error reduction ratio (SRR)
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Regressor with highest SRR value improves model best

Iterative algorithm:

• compute SRR for all possible regressors (polynomial nonlinearities)

• insert best regressor in model

• compute MSSE for all regressors inside the model and eliminate
least significant one if MSSE increases without it.

• recompute SRR values for all remaining regressors
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Second step: identification of a LPV model

Chosen regressors of step one form a scheduling variable
parameters have to be re-estimated

Regressors built with moving average of input/output
signals to get a smooth scheduling variable

Linear system parameters depend on z
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Parameter estimation of both and             in one step
with nonlinear trust-region algorithm
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Pros and cons:

• trust-region algorithm is not so sensitive on initial values

• scheduling variable may have a physical meaning

• higher computational effort

• EGR system: input: manipulated variable 
output: actual value, position of valve

• VGT system: input: manipulated variable
output: actual value, position of turbine blade

NARX-NLPV and NLPV class of Previdi, Lovera is compared
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EGR: scheduling variable NLPV(PL) and NARX-NLPV
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VGT: scheduling variable NLPV(PL) and NARX-NLPV
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Comparison with fit-value: [ ]
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VGT 71,3

EGR 59,1

• Input signals: engine speed, injected fuel quantity, position of EGR valve,
position of turbine blades

• Output signals: MAP … manifold air pressure
MAF … mass air flow
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Conclusions

Outlook

• a new identification algorithm for LPV models has been introduced

• the optimization with a trust region method is not sensitive on initial
values

• multiple identifications with different initial values are not essential

• nonlinear systems can be approximated with LPV models

• smooth scheduling variable due to polynomial functions

• NARX identification has high computational effort, depending on
number of inputs, data points and order of polynomial functions

• no significant improvement of model quality if order of polynomials
functions exceeds three

• best results for NARX model with no moving average

• number of values for calculation of the moving average is essential
for the quality of the NARX-NLPV model

• multiple identifications with different moving averages of the signals
are recommended

• physical interpretation of the identified scheduling variable with
measurement data which was not used for identification should be
investigated in detail

• the influence of the parameter which is used building the moving
average signals should be investigated in detail

• some proposals could be introduced to speed up the NARX 
identification procedure

320 325 330 335 340 345 350 355 360
-200

-100

0

100

200

m
af

Measured Output and Simulated Model Output

t [s]

320 325 330 335 340 345 350 355 360

-200

-100

0

100

200

m
ap

t [s]

measured
model8 

measured 
model8 

NARX-NLPV model

Local linear state space modelScheduling variables


