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SISO PI - Control ℋ∞ Control

Optimal Control Performance
• What is the optimal control performance?  
• Is it possible to achieve optimal tracking      

with constraints on GFC and WG?
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• Turbocharger not fast  
enough

• Always a compromise 
between PHI and 
RPM deviation

• Inputs
o Exogenous input w

References
Disturbances

o Manipulated variables u

• Outputs
o Performance output z

E.g. tracking error

o Measured variables y
• Chien, Hrones and Reswick design guide
• 3 different proportional parts
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Identification data- Inputsignal
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Simulation
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• Approximation of load deviation by  
dynamic model 

• Each LS changes has a different
load deviation  → different models

• Split data stream according to LS 
situation → multi experiment with   
equal initial conditions

• MIMO state space system
• PEM
• 6th order
• Ta = 0.1s
• Time delays

•GFC 0.6s
•WG 1.1s
•LS 2.3s

Main aim  → Reduce NOx on existing engines

• Advanced fuel mixing 
• Ignition timing 
• Catalytic reduction
• Low emission engine design

• 6 cylinder two stroke engine
• 2000hp @ 300 rpm 
• Powered with natural gas (GFC → RPM)
• Turbo charged (WG→AMP)
• Drives 3 compressor cylinders
• Power control is done with pockets
• Pockets → additional compressor clearance volume
• 28 different combinations → Load Steps (LS)
• Not perfectly synchronized switching

• Substantial load deviations
• Disturbance very crucial 
• Causes peaks in the emissions
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Outlook
• Turbocharger response too slow 

→ Jet assist 
• Design of Experiment (DOE) very important

→ Optimized excitation signal 
→ PRBS amplitude and frequency 

• LS in truth a nonlinear parameter jumping  system
→ Nonlinear MPC instead of explicit linear MPC
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• Reduce and keep PHI constant → reduces NOx Emissions
• Load deviation caused by the unsynchronized pocket switching  

was approximated by a dynamic system. 
• Design of experiment is a very crucial 
• Perfect tracking with constraints on WG is not possible
• ℋ∞ approach does not gain any advantage 
• Future measured disturbance approach increases the control 

performance, drawback of this method is the high dimension of
the system

• MPC is able to reduce squared PHI deviation up to 80%.
• Average improvement based on LS 7-10-7 : 57%

The governmental regulations concerning emissions of fossil fuel powered 
engines are more and more strengthened. New laws are focusing especially 
on nitrogen oxide and nitrogen dioxide emissions (NOx). Not only car engines 
are affected by strong emission restrictions, but also industrial engines. 
Several techniques are known to reduce the NOx emissions, especially an 
advanced fuel to air ratio (PHI) control is known as major step towards further 
emission reduction. The possibility to reduce the NOx emissions was 
investigated for legacy reciprocating natural gas powered engines. This kind 
of engine is used on pipeline pump stations. The typical control on such 
pipeline engines consists of nested SISO PID loops. The system has naturally 
a MIMO structure. A MIMO control can use the information about the coupling 
to improve the overall control performance.  Two MIMO model based 
controller, which inherently take into account the couplings, were designed. By 
simulation, the control performance was compared with the SISO control 
performance. The most promising approach – a model predictive control 
(MPC) – was implemented on the real engine. Focusing on the squared PHI
deviation over 80 % reductions were achieved. 

1. Invert  GFC → RPM Path

2. Invert WG→ PHI Path

Excitation signal with constant parts: 

→ Multi experiment with equal initial conditions : 

• Identify a linear model for MPC
• Extend the state space

Manipulated variables (GFC,WG)
Measured disturbances (LS)
Offset free tracking
Future measured disturbance

• Calculate online version of MPC with MPC Toolbox
• Calculate explicit MPC

Hybrid Toolbox
Generate C-header
Modification of MPC object necessary
Result → state regulator

• Design Kalman filter
• Implement MPC in  Simulink dSpace
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Future disturbance information:

Weighting on PHI and RPM 
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Control horizon 1
Control horizon 2
Control horizon 3
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Prediction / Control horizon

• The MPC approach was implemented as real time application running     
on a dSpace AutoBox. 

• Explicit approach with control horizon = 1
• 3 MPC according to the LS situation

(LS 7→8, LS 8→7, small LS)

LS change
MPC 

(PLC=100%)
7 → 8 63 %
8 → 9 27.2 %
9 → 10 43.4 %
10 → 9 19.1 %
9 → 8 35.1 %
8 →7 70.5 %

average 57 %
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Comparison
• ℋ∞ controller tuning very  
challenging, result not  
satisfying

• PI control easy to tune, 
result comparable with ℋ∞

• MPC tuning very flexible, 
best performance 

Result : 


