

Institute for Design and Control of Mechatronical Systems

Identifikation und Modellierung der Dynamik von Emissionsmessgeräten

Parzer Patrick

Johannes Kepler University Linz Institute for Design and Control of Mechatronical Systems

Linz, 07.10.2014

1. Aufgabenstellung

- Ziel: Reduzierung der Emissionen
 - Vielzahl an Emissionsmessgeräte zur Erfassung sind notwendig

- Cambustion NOx
- AVL Microsoot MSS
- AVL Opacimeter OPA
- HORIBA MEXA 7100
 - CO2
 - NOx
 - THc
 -
- SmartNOx VDO
- Lambdasensor LSU

Überblick

- ✓ Aufgabenstellung
- Messgeräte zur Erfassung der Emissionen
- Dynamische Eigenschaften
- Versuchsplanung
- Messung und Identifikation: Variante 1
- Messung und Identifikation: Variante 2
- Validation anhand NEDC
- Schlussfolgerungen

2. Messgeräte zur Erfassung

Lambdasensor LSU

Messprinzip:

- Abgas gelangt in Diffusionsspalt
- Sensorzelle vergleicht Sauerstoffgehalt in Diffusionsspalt und im Referenzluftkanal.
- Anlegen einer Pumpspannung U_p, Pumpzelle kann Sauerstoff aus dem Spalt hinein oder hinaus pumpen, so dass die Zusammensetzung im Spalt konstant bei λ = 1 liegt
- Mageres Abgas $\lambda > 1 \rightarrow I_p > 0$
- Fetteres Abgas $\lambda < 1 \rightarrow I_P < 0$
- Pumpstrom→ Sauerstoffgehalt → Lambdawert

Cambustion fNOx 400

- Messprinzip: Chemilumineszenz (CLD)
 - Messgas wird in der Reaktionskammer (1) mit Ozon gemischt.
 - 2. Das im Messgas enthaltene NO oxidiert zu NO2, Moleküle sind teilweise im angeregten Zustand.
 - Bei der Rückkehr der Moleküle in den Grundzustand wird Energie frei in Form von Licht (→CLD)
 - Detektor (6) misst emittierte Lichtmenge → Stickstoffmonoxid Konzentration im Messgas.

SmartNOx VDO

Messprinzip: Messfühler (Zirkonium Mehrschicht Keramik)

HORIBA MEXA 7100- NOx

Messprinzip: Chemilumineszenz (CLD)

HORIBA MEXA 7100- CO2 Messung

- Messprinzip: NDIR Prinzip (nondispersive Infrared method)
 - 1. Über einen Strahler erzeugte breitbandige Infrarotstrahlung wird über eine Chopperscheibe durch eine mit Messgas gefüllte Messzelle geführt.
 - 2. Messkomponenten absorbieren einen bestimmten Wellenlängenbereich der Strahlung
 - Intensität wird am Ende der Messzelle durch einen Detektor (9) gemessen → CO2 Konzentration

2. Messgeräte zur Erfassung: Partikelmessung

AVL Microsoot MSS- Rußpartikelsensor

Messprinzip: PAS (Photoakustische Spektroskopie)

- 1. Messgas wird mit einem modulierten Lichtstrahl bestrahlt.
- Lichtenergie wird von Rußpartikeln absorbiert → Ausdehnung und Kontraktion des Trägergases → Entstehung eines akustischen Signales → wird über Mikrophone aufgenommen.

AVL Opacimeter- Trübungsmessgerät

Messprinzip: Beer- Lambert Gesetz

- 1. Messkammer (7) mit definierter Messlänge wird mit Abgas über Entnahmesonde(1) gefüllt.
- Lichtschwächung zwischen Lichtquelle (2) und Empfänger (6) wird gemessen → Berechnung der Trübung

$$E_{\lambda} = lg\left(\frac{I_0}{I_1}\right) = \varepsilon_{\lambda}.c.d$$

- I_1 : Intensität des transmittierten Lichtes (Einheit: W·m⁻²)
- I_0 : Intensität des einfallenden (eingestrahlten) Lichtes (Einheit: W·m⁻²)
- c: Stoffmengenkonzentration der absorbierenden Substanz in der Flüssigkeit (Einheit: mol·l⁻¹)
- ε_λ: dekadischer Extinktionskoeffizient (oft auch als spektraler Absorptionskoeffizient bezeichnet) bei der Wellenlänge. Dieser ist eine für die absorbierende Substanz spezifische Größe und kann unter anderem vom pH-Wert oder vom Lösungsmittel abhängen. Bei einer Konzentrationsangabe in Mol wird als dekadischer molarer Extinktionskoeffizient angegeben, beispielsweise in der Einheit m^{2.}mol⁻¹
- d: Schichtdicke des durchstrahlten Körpers (Einheit: m)

3. Dynamische Eigenschaften-Totzeiten

• Gesamt- Totzeiten werden in 3 Teile aufgeteilt

3. Dynamische Eigenschaften- Variable Totzeit

 Veränderung des Betriebspunktes des Motors (Drehzahl, Gaspedalstellung) führt zu unterschiedlichen Totzeiten.

3. Reale Gaskonstante \Re

Um reale Werte für die Gaskonstante zu bekommen wurde der Satz von Zacharias (1966) herangezogen.

Mindestluftbedarf für Diesel 14,33

3. Ansatz von Zacharias (1966)

- Betrachtung der Inneren Energie des Gases im Zylinder.
- Ansatz von Justi (1938) Gaszusammensetzung wird über das Verbrennungsluftverhältnis ausgedrückt.
- Zusammensetzung des Abgases ist als konstant vorrausgesetzt.
- Genauere Informationen bezüglich dieses Themas findet man in der Disseration von Zacharias: Analytische Darstellung der thermodynamischen Eigenschaften von Verbrennungsgasen, TU Berlin 1966.

3. Ansatz von Zacharias (1966)

Massenanteil c für Kohlenstoff und h für Wasserstoff

X und Y sind die Molanteile	
Aus der Molmasse des Kraftstoffes ergibt sich mit den entsprechenden Molanteilen C und H ein	

С	X=10.8	c=0.874	
Н	Y=18.7	h=0.126	
0	Z=0	o=0	
Mindestluftbedarf	14,33		
Molmasse C	12.0107g/mol		
Molmasse H ₂	2.0588 g/mol		

Über die Sauerstoffbilanz ergibt sich:

X und Y sind

$$n_{O_{2,\min}} = c \cdot \frac{1}{M_c} + h \cdot \frac{1}{2} \cdot \frac{1}{M_{H_2}}$$

Mit den Anteilen von 21 % Sauerstoff in der Verbrennungsluft und der Molmasse für Luft von 28.85 g/mol ergibt sich der Mindestluftbedarf zu:

$$L_{\min} = \frac{n_{O_{2,\min}}}{0.21} \cdot M_{Luft}$$

4. Versuchsplanung

- Festlegung des Betriebsbereiches des Motors
 - Drehzahlbereich: 800-3000 U/min
 - Gaspedalstellung: 10-60%

5. Modellbildung

- Variante 1: Direkte Methode
 - Die Anregung erfolgt über die Gaspedalstellung in Form eines PRBS.
 - Durchführung der Messungen in den Betriebspunkten.
 - Identifizieren und Validieren der Modelle.
- 1) Zusammenfassen des Datensatzes mit iddata
- 2) Laden des Datensatzes und entfernen der Mittelwerte
- 3) Teilung der Datensätze
- 3) Durchführen der Identifikation (Modellstrukturen,...)

- Messvorgang
 - Drehzahlvorgabe: 2500 U/min
 - Gaspedalstellung 0- 10%

tf: 5 poles; 4 zeros

	max. Wert	Modellstruktur	FIT Wert
CamNOx	38,9855 ppm	tf: 5 poles 4 zeros	87,11%
Horiba Nox	38,963 ppm	tf: 5 poles 4 zeros	62,74%
Smart Nox	39,218 ppm	tf: 5 poles 4 zeros	89,29%
AVL MSS	6,98 mg/m³	tf: 5 poles 4 zeros	90,15%
AVL Opacity	0,442%	tf: 5 poles 4 zeros	69,89%

- Bei der Variante 1 wird durch die Anregung über das Gaspedal der Luftund der Einspritzpfad angeregt.
- Die Totzeiten des Luftpfades sind im Ergebnis enthalten → Nur Einspritzparameteranregung.

5. Modellbildung Variante 2- Anregungssignal

- Gesucht ist ein Anregungssignal, bei dem der Luftpfad nicht mitangeregt wird.
- Das Anregungssignal muss eine Einspritzbezogenen Komponente sein, da die Anforderung ist, dass der Luftpfad nicht mitangeregt wird.

5. Modellbildung Variante 2- Anregungssignal

Kombination aus:

- Common Rail Druck
- Einspritzwinkel

- 1. Totzeiten werden aus Ausgangs- und Eingangsdatensätzen ermittelt.
- 2. Totzeiten werden über den Abgasvolumenstrom aufgetragen.
- **3**. Datensatz wird von der Totzeit befreit.
- 4. Modelle werden erstellt: PTn- Modelle, notwendig zur Validierung der Totzeiten
- 5. Zeitkonstanten der Modelle werden über dem Abgasvolumenstrom aufgetragen.

5. Modellbildung Variante 2- Identifikation

Cambustion NOx

 Man erkennt sehr gut über die RMSE Werte das die Funktion sehr gut zu den Messpunkten passt.

Institute for Design and Control of Mechatronical Systems

6. Simulink Modell

- Um eine Validation durchführen zu können ist ein Simulink Modell notwendig.
 - 1. Volumenstrom berechnen
 - 2. Auswahl der Konstanten
 - 3. PTn Glied

7. Validation der Modelle (Stickoxide)

- Betriebspunkt: 2200 U/min Einspritzmenge 6.345 mg/cyc
- Messung und Simulation passen sehr gut zusammen

8. Problemstellung Partikelmessung

Drehzahl 2000 U/ min Einspritzmenge 9.23 mg/cyc; Prail 1035bar – 1080 bar

Drehzahl 2000 U/ min Einspritzmenge 5.4865 mg/cyc; Prail 800bar – 850 bar

9. Transiente Messzyklen- NEDC

Validation Simulinkmodell

- Aus den Volumenströmen werden die die Totzeiten bzw. Zeitkonstanten ausgewählt.
- Wie man erkennt werden die Totzeiten gut abgeschätzt.
- Peaks werden nicht gut abgeschätzt sind jedoch nicht Hauptaugenmerk dieser Arbeit gewesen.

- Wie erwartet hat sich gezeigt, dass die Messprinzipien der Sensoren zu unterschiedlichen Totzeiten f
 ühren.
- Auch die erwarteten variablen Totzeiten konnten durch Messungen nachgewiesen werden.
- Die Totzeit in der Variante 1 wurde durch die Luftpfadtotzeit verfälscht →
 Variante 2
- Variante 2 führte zu guten Ergebnissen im Hinblick auf den transienten Messzyklus

Danke für die Aufmerksamkeit!

Formeln Totzeit Motor

Der Einspritzzeitpunkt findet am Ende des Kompressionstaktes statt oder dem beginn des Leistungstaktes. Darum wird eine Motorumdrehung als Totzeit herangenommen

