Closed-Loop Control of a Combustion Engine Model

Loay Altaweel

Supervised by Dr. Waschl Harald

Agenda

- Background
- Controllers
- Problem
- Goals
- Controller choice
- Controller analysis and design
- Conclusion

Background

Feed-forward & Feedback control loops (Plant \rightarrow P(s))

Controllers: Proportional-Integral-Derivative (PID)

$$u(t) = K_p \cdot e(t) + K_i \cdot \int_0^t e(T) dT + K_d \frac{d \cdot e(t)}{dt}$$

Controllers: Model Predictive control (MPC)

$$\min_{\mathbf{u}} \Sigma_{j=k}^{k+N-1}(x^T(j|k)Qx(j|k) + u^T(j|k)Ru(j|k))$$

subject to

$$\begin{aligned} u(k+j|k) &\in U\\ x(k+j|k) &= Ax(k+j-1|k) + Bu(k+j-1|k) \end{aligned}$$

Problem

Design an optimal closed-loop control for a gasoline combustion engine taking into consideration actuators and limitations of the system (knocking & misfiring).

Goals

- The main goal is to increase the efficiency of the engine model while following the desired torque trajectory
- Achieve the following desirable outputs:
 - 1. Reducing knocking and misfiring.
 - 2. Adjusting the EGR valve position to maximize energy output of the engine.
 - 3. Minimizing the over all fuel consumption.

Simulation Scenarios: ONE

Simulation Scenarios: TWO

Simulation Scenarios: THREE

Simulation Scenarios: FOUR

Simulation Scenarios: FIVE

Conclusion of Scenarios ONE-FIVE

- Scenarios revealed strong coupling between inputs and outputs
 - Henceforth, MPC controller should be used.

MPC Controller Design: Steps

- 1. Linearization of the provided model (Toyota model)
- 2. Defining horizons options.
- 3. Define input and output constraints.
- 4. Adjusting output and input weights, and input rate weight to accommodate the non linear plant to the desired output.

Identification

Identification: Result

- Cylinders 1 and 2 have been selected as basis for an MPC controller design.
 - They have the highest fit values.

output	cylinder 1	cylinder 2	cylinder 3	cylinder 4
torque	76.88	79.51	-	72.96
knocking	46.73	64.29	-	51.95
misfiring	24.33	37.19	-	21.41
fuel consumption	76.38	78.28	-	69.79
system order	2	5	-	2

MPC Controller Design: Controller MPC_{c1,basic}

• MPC_{c1,basic}: designed based on **Cylinder 1**.

Name	Weight	Rate Weight
Throttle	0	8.8674
Spark Advance	0	5.5116
EGR position	0	13.2278

Table 8: Inputs Weights for nonlinear model

Name	Weight
Torque	0.22679
Knocking	0.49895
Misfiring	0.63503
Fuel consumption	0.0028804

Table 9: Outputs Weights for nonlinear model

MPC Controller Design: Controller MPC_{c1,advanced}

• MPC_{c1,advanced}: based on **Cylinder 1** with error adjustment.

Name	Weight	Rate Weight
Throttle	0	8.8674
Spark Advance	0	5.5116
EGR position	0	13.2278

Table 8: Inputs Weights for nonlinear model

Name	Weight
Torque	0.22679
Knocking	0.49895
Misfiring	0.63503
Fuel consumption	0.0028804

Table 9: Outputs Weights for nonlinear model

signal name	output disturbances	output disturbances	Measurement Noise	Measurement Noise
	type	magnitude	type	$\operatorname{magnitude}$
Torque	step	10	white	1
Knocking	step	0.01	white	1
Misfire	step	0.01	white	1
Fuel consumption	step	$1e^{-5}$	white	1

Table 10: Type and magnitude of the error signals.

MPC Controller Design: Controller MPC_{c2,advanced}

• MPC_{c2,advanced} : based on **Cylinder 2** with error adjustment.

Name	Weight	Rate Weight
Throttle	0	48.3416
Spark Advance	0.15386	148.6233
EGR position	0.0017311	3.4684

<u>mi</u>

Table 11: Inputs Weights for nonlinear model

Name	Weight
Torque	0.74961
Knocking	0.029526
Misfiring	0.12397
Fuel consumption	0.025704

Table 12: Outputs Weights for nonlinear model

signal name	output disturbances	output disturbances	Measurement Noise	Measurement Noise
	type	magnitude	type	$\operatorname{magnitude}$
Torque	step	10	white	1
Knocking	step	0.01	white	1
Misfire	step	0.01	white	1
Fuel consumption	step	$1e^{-5}$	white	1

Table 10: Type and magnitude of the error signals.

MPC Controller Design: Evaluation of MPC_{c1,basic}

• Input

MPC Controller Design: Evaluation of MPC_{c1,advanced}

• Input

MPC Controller Design: Evaluation of MPC_{c2,advanced}

• Input

Conclusion

• We have selected MPC_{c2,advanced} because it has the highest efficiency while having a smooth torque trajectory.

Signals	$MPC_{c1\ basic}$	$MPC_{c1 \ advanced}$	$MPC_{c2 \ advanced}$
torque	126.0657	28.025	138.1639
knocking	0	0	0
$\operatorname{misfire}$	0.2681	0	9.7705
fuel consumption	$4.2256 * 10^{-9}$	$8.1545 * 10^{-9}$	$4.1255 * 10^{-9}$
throttle	205.8399	226.5927	182.9434
spark advance	606.4382	606.2328	424.0316
EGR value	4.2121	3.1248	8.5438
$\overline{\mu}_{engine}$	28.84	12.20	30.77

Questions !

Scenario ONE: output

<u>Back</u>

Identification Scenario: **Output**

MATLAB MPC Cost Function

$$\begin{split} J(z_k) &= J_y(z_k) + J_u(z_k) + J_{\Delta u}(z_k) + J_{\epsilon}(z_k) \\ J_y(z_k) &= \Sigma_{j=1}^{n_y} \Sigma_{i=1}^p \left\{ \frac{w_{i,j}^y}{s_j^y} [r_j(k+i|k) - y_j(k+i|k)] \right\}^2 \\ J_u(z_k) &= \Sigma_{j=1}^{n_u} \Sigma_{i=0}^p \left\{ \frac{w_{i,j}^{\Delta u}}{s_j^u} [u_j(k+i|k) - u_{j,target}(k+i|k)] \right\}^2 \\ J_{\Delta u}(z_k) &= \Sigma_{j=1}^{n_u} \Sigma_{i=0}^{p-1} \left\{ \frac{w_{i,j}^{\Delta u}}{s_j^u} [u_j(k+i|k) - u_j(k+i-1|k)] \right\}^2 \\ J_{\epsilon}(z_k) &= \rho_{\epsilon} \epsilon_k^2 \\ u &= \begin{bmatrix} x_{th} & 0 & 0 \\ 0 & \phi_{SA} & 0 \\ 0 & 0 & x_{EGR} \end{bmatrix} \qquad r = \begin{bmatrix} T_r & 0 & 0 & 0 \\ 0 & h_{K,r} & 0 & 0 \\ 0 & 0 & h_{M,r} & 0 \\ 0 & 0 & 0 & qf_r. \end{bmatrix} \\ \Delta u &= \begin{bmatrix} \Delta x_{th} & 0 & 0 \\ 0 & \Delta \phi_{SA} & 0 \\ 0 & 0 & \Delta x_{EGR} \end{bmatrix} \qquad y = \begin{bmatrix} T & 0 & 0 & 0 \\ 0 & h_K & 0 & 0 \\ 0 & 0 & h_M & 0 \\ 0 & 0 & 0 & qf_r. \end{bmatrix} \end{split}$$