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Abstract
Driver assistance systems have become more and more important in recent years due to the
increasing degree of automation in road traffic – especially with regard to increasing safety.
These systems do not only provide passive protection for driver and passengers (e.g. through
airbags), but – in the near future – will also be able to protect other road users from injury
by actively avoiding collisions. Emergency brake assistants are already mandatory for newly
registered trucks and buses, and these assistants are becoming increasingly important also in
civil road traffic. The next stage of development will be assistance systems that can carry
out not only emergency braking independently but – if necessary – also steering manoeuvres
if those are required to avoid a collision.
This thesis deals with such an autonomous braking and steering assistant that intervenes in
critical situations to avoid accidents. The aim of this thesis is to develop a system that can
follow a given route under normal conditions and takes action if necessary, namely if obstacles
or other road users would involve the vehicle in an accident. For this purpose, a simple model of
a real vehicle is created, including model boundaries and physical limitations. Subsequently, a
mathematical formulation of the environment as well as of various other road users is developed
– the group of possible dynamic objects is limited to passenger cars, cyclists, and pedestrians.
In the next step, an optimisation problem is formulated with the aim to avoid collisions and to
follow the original path as well as possible. In each optimisation step, this is done in a two-layer
structure. In the first layer, non-linear model predictive control (NMPC) with a prediction-
and control-horizon of 5 s is used to check which of the available lanes has the lowest risk
for a collision. This lane is then selected as the reference for the next layer if the risk of
a collision on the primary lane exceeds a certain limit in this step. In the second layer, the
selected trajectory is tracked as well as possible by an NMPC – taking into account the existing
collision risk – with the additional involvement of other road users. This happens with a now
shorter prediction- and control-horizon of 2 s. In order to be able to estimate the behaviour
of other road users, a prediction model is introduced which deduces from the states of the
objects to their inputs and predicts their future behaviour. In order to evaluate this model,
data from real road users were recorded by using a test-vehicle, and were analysed later on. In
a final step, the developed collision avoidance assistant is applied to a selected set of scenarios.
The resulting trajectories are then validated using a realistic vehicle model in IPG CarMaker
to obtain information about the modelling quality.

Modelling of the ego-vehicle
For the ego-vehicle, a single-track model is selected. It contains four states (position x(t) and
y(t), velocity v(t) and orientation θ(t)) as well as two inputs (acceleration/deceleration a(t)
and steering angle δ(t)). Da expresses the axle spacing of the vehicle.
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By using the simple forward Euler method, the proposed continuous-in-time model is trans-
formed to a discrete-in-time model with Ts = 0.1 s as the sample time of the system. The
presented model is used for all further applications in this work, which means that no mismatch
between the NMPC-model and the process is assumed. This assumption is later validated off-
line using a high-degree-of-freedom model by tracking the generated trajectories with IPG
Carmaker.
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A two-layer approach is used to provide optimal
results. In the first layer, a set of possible trajec-
tories – using all available lanes – is generated.
Then, the safest one of these trajectories is se-
lected – with some heuristics in the background
to keep the focus on the primary planned lane
– except when it gets too dangerous.
Time to collision (TTC) to the predicted posi-
tions of surrounding obstacles acts as a perfor-
mance criterion for the specific trajectories.
The second layer then tries to track the selected
trajectory, but additionally minimizes the risk
of a collision by avoiding obstacles along the
trajectory through braking and steering. This
procedure happens in each optimisation step,
the concept is shown in the picture.

Prediction
In this work, a single trajectory simulation is combined with the amount of dynamics defined by the previous movement of the obstacle to get a field of future
object states that evolves and gets bigger with each prediction step. Previous dynamics in movement are taken into account to trim future states to a reduced
set. The single-track model is used for the prediction. In general, the states of such a system vary over time, which can easily be observed when looking at
cars in the real world, while inputs of the system (in this case acceleration or deceleration a(k) and steering angle δ(k)) remain mostly equal during static
manoeuvres and only vary when a different manoeuvre is chosen or to readjust the movement during an ongoing manoeuvre. Based on this hypothesis, the
prediction algorithm relies on the estimated inputs of the system and not on the states. Therefore, a method to calculate inputs based on available states is
required, assuming that all states of the vehicle are measured. For k = k∗ −Ms, . . . , k

∗ measured states, the estimation of the inputs can be performed by
simply reshaping and solving the equations for aest(k) and δest(k). v s(·) as well as θs(·) represent the entries of the measured state vectors smoothed with the
function csaps in MATLAB R© to cancel the influence of potential measurement noise on the prediction. The prediction error is defined as the distance between
actual measured position-states and the predicted field where the position is assumed to be. As the LIDAR system, which was used to obtain measurement
data, was only capable of measuring the outer dimensions of obstacles, it was not possible to determine the distance Da between the obstacle axles. Therefore,
the median of common values was used for the specific types. As pedestrians have no actual axle spacing, the value was selected significantly smaller compared
to cars and bicycles to model their capability of fast direction changes. The selected values are Dcar

a = 2.5m, Dbicycle
a = 1.1m and Dpedestrian
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Step 02 Dist. = 0.01 m
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Scenarios and Results
The assistant was tested using scenarios,
three of them are shown in this section. All
results were also validated by tracking the
resulting trajectories with a high-degree-of-
freedom model implemented in IPG Car-
maker. All scenarios could be tracked with-
out significant deviation. Therefore the
used single-track model is confirmed as suf-
ficient. As expected, the assistant avoids
collisions with the obstacles by braking and
steering. Depending on the behaviour of
other road users, the assistant adapts the
trajectory of the ego-vehicle (light blue).
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Conclusions and Outlook
The developed system is able to avoid collisions in all observed
scenarios, and the general behaviour seems promising, be-
cause the system reacts as expected. More measurements of
general and also critical traffic situations will follow, as well as
a catalogue of critical testing scenarios – or even other meth-
ods for the safety evaluation of such a system – to contribute
to a further development of the system. An implementation
of this method for extra-urban applications would be inter-
esting, as the current system was developed and tested only
for urban scenarios with up to 50 km/h. To sum up, there is
to say that the two-layer approach leads to promising results
that should be further investigated.


